Professor Jinsong Huang is working to change the renewable power industry with his perovskite solar cell method that will make solar energy more affordable.
Why Innovators Care: Harnessing solar energy is an ages-old concept that is seeing innovative advances. The need for small, lightweight, affordable panels led Jinsong Huang and his team to develop affordable solutions that may transform renewable energy.
1870: Decade when French inventor Augustin Mouchot invented the earliest solar-powered engine
2 million +: Solar installations in the US in 2019:
1: Small, lightweight perovskite technology that may make solar energy affordable for all
If someone asked you to wager a guess on when solar energy first came of age, and you said the seventies, you’d be correct – but only if you meant the 1870’s. That’s when French inventor and renewable energy pioneer Augustin Mouchot used his diverse expertise in mathematics and physical sciences-along with his keen interest in the sun-to invent the earliest solar-powered engine.
Advances in solar energy have been vast since Mouchot first demonstrated his invention at the World Expedition in Paris in 1878. Fast forward to today, and one of the most exciting developments is taking place at the University of North Carolina at Chapel Hill, where Jinsong Huang and his research group are tapping into the spirit of Mouchot’s cross-disciplinary research approach to develop their own innovation – one that promises to usher in a new era in affordable renewable energy. Huang, a professor in the applied physical sciences department, leads a research team that includes experts from multiple fields to pioneer a novel method for stabilizing perovskite solar cells.
We are working with people in multidisciplinary areas and in different fields. Our goal is to reduce the cost of solar energy, and we need to consider how affordable the solution can be. – Jinsong Huang
A recent article by the UNC College of Arts & Sciences outlines how perovskite solar cells have become increasingly popular subjects of renewable energy research as they demonstrate high solar-to-electricity conversion efficiencies at a low production cost. But their stability when exposed to moisture and oxygen remains a critical hurdle to overcome before the cells can truly become market ready. The Huang Group is addressing this challenge with a new method that would enhance the resistance of the perovskite solar cells under ambient conditions.
“Solar energy is abundant. You only need to have a small part of sunlight to create electricity,” says Huang. “Our new method of harvesting solar energy is cheaper than the popular method. We want to make energy using the sun, converting it to clean energy that is affordable. We are trying to provide electricity using clean energy, but without increasing your bill,” he adds.
In its work, the Huang Group collaborates with other departments across campus, bringing together expertise from areas like chemistry, engineering and materials science.
“We are working with people in multidisciplinary areas and in different fields. Our goal is to reduce the cost of solar energy, and we need to consider how affordable the solution can be,” says Huang. “My group is really diverse. We have top-notch scientists with backgrounds in chemistry, physics, engineering and materials science. Solving problems is in our blood. We have to work with people with different backgrounds, and we benefit a lot from collaboration with other faculty.”
Solving problems is in our blood. We have to work with people with different backgrounds, and we benefit a lot from collaboration with other faculty. -Jinsong Huang